

Max Marks: 60

Date: 02.10.2022

JB 2 MR BATCH PHYSICS : DCT Topic: Work Energy Power

1.	A body of mass 5 kg is placed at the origin, and can move only on the x-axis. A force of 10 N is acting on it in a direction making an angle of 60° with the x-axis and displaces it along the x-axis by 4 metres. The work done by the force is								
	(a)	2.5 J	(b)	7.25 J	(c)	40 J	(d)	20 J	
2.	A force $F = (5\hat{i} + 3\hat{j})N$ is applied over a particle which displaces it from its origin to the point $r = (2\hat{i} - 1\hat{j})$ meters The work done on the particle is								
	(a)	—7 J	(b)	+13 J	(c)	+7 J	(d)	+11 J	
3.	A horiz surface	contal force of 5 N is The work done by	s require this forc	ed to maintain a veloc ce in one minute is	ity of 2	m/s for a block of 10	kg mass	sliding over a rough	
4.	(a)600 J(b)60 J(c)6 J(d)6000 JA box of mass 1 kg is pulled on a horizontal plane of length 1 m by a force of 8 N, then it is raised vertically to a								
	neight (or 2m, the net work	done is	0.1	(-)	10 1	(1)	Nama of these	
5.	(a) A 10 kg	28 J g satellite completes	(D) s one rev	8 J volution around the e	(c) arth at a	height of 100 km in	(a) 108 min	utes. The work done	
	by the g	gravitational force o	of earth v	vill be					
	(a)	$108\times100\times10~J$	(b)	$\frac{108 \times 10}{100} \mathbf{J}$	(c)	$\frac{100 \times 10}{108} J$	(d)	Zero	
6.	A posit	ion dependent force	$\vec{F} = (7 \cdot \vec{F})$	$-2x+3x^2$)N acts on	ı a small	object of mass 2 kg	to displa	ce it from $x = 0$ to x	
	= 5m. T	The work done in jo	ule is						
	(a)	70 J	(b)	270 J	(c)	35 J	(d)	135 J	

7. A particle moves under the effect of a force F = Cx from x = 0 to $x = x_1$. The work done in the process is

(a)
$$Cx_1^2$$
 (b) $\frac{1}{2}Cx_1^2$ (c) Cx_1 (d) Zero

- 8. The vessels A and B of equal volume and weight are immersed in water to a depth h. The vessel A has an opening at the bottom through which water can enter. If the work done in immersing A and B are W_A and W_B respectively, then
 - (a) $W_A = W_B$ (b) $W_A < W_B$ (c) $W_A > W_B$ (d) $W_A > = < W_B$
- Work done in time t on a body of mass m which is accelerated from rest to a speed υ in time t₁ as a function of time t is given by

(a)
$$\frac{1}{2}m\frac{v}{t_1}t^2$$
 (b) $m\frac{v}{t_1}t^2$ (c) $\frac{1}{2}\left(\frac{mv}{t_1}\right)^2t^2$ (d) $\frac{1}{2}m\frac{v^2}{t_1^2}t^2$

10. A 10 kg mass moves along x-axis. Its acceleration as a function of its position is shown in the figure. What is the total work done on the mass by the force as the mass moves from x = 0 to x = 8 cm

11. The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from x = 1 cm to x = 5 cm is

12. The graph between the resistive force F acting on a body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. When the distance covered by the body is 5 m, its kinetic energy would be

13. If W_1 , W_2 and W_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass m, find the correct relation

- (a) $W_1 > W_2 > W_3$ (b) $W_1 = W_2 = W_3$ (c) $W_1 < W_2 < W_3$ (d) $W_2 > W_1 > W_3$
- 14. A particle of mass 0.01 kg travels along a curve with velocity given by $4\hat{i}+16\hat{k}$ ms⁻¹. After some time, its velocity becomes $8\hat{i}+20\hat{j}$ ms⁻¹ due to the action of a conservative force. The work done on particle during this interval of time is
 - (a) 0.32 J (b) 6.9 J (c) 9.6 J (d) 0.96 J
- 15. A particle of mass 'm' and charge 'q' is accelerated through a potential difference of 'V' volt. Its energy is

(a)
$$qV$$
 (b) mqV (c) $\left(\frac{q}{m}\right)V$ (d) $\frac{q}{mV}$

Max. Marks: 60

Date: 02.10.2022

JB 2 MR BATCH MATHEMATICS : DCT Topic: Permutation

16. In how many ways can a cricket eleven choose a captain and a vice-captain from as							nongst themselves?		
	(a)	19	(b)	21	(c)	90	(d)	110	
17.	Three p done in	prizes are to be distr	be distributed in a class of 10 stude		nts. If a	students can get onl	y one pr	ize, then this can be	
	(a)	30 ways	(b)	720 ways	(c)	13 ways	(d)	None of these	
18.	How m	any 2-digit number	can be f	formed from the digits	51, 3, 5,	7, 9 if repetition is no	ot allowe	ed?	
	(a)	9	(b)	20	(c)	25	(d)	16	
19.	How m	any 3-digit numbers	s can be	formed from the digit	ts 3, 4, 6	, 0, 7, 8 if repetition i	s not all	owed?	
	(a)	29	(b)	100	(c)	180	(d)	None of these	
20.	How m allowed	any 4-digit number 1?	greater	than 7000 can be for	rmed fro	m the digits 1, 2, 3,	5, 7, 8, 9	9, if repetition is not	
	(a)	160	(b)	260	(c)	360	(d)	None of these	
21.	How many 5-digit number, divisible by 5, can be formed from the digits 3,1, 7, 0, 9, 5, if repetition is allowed?							, if repetition is not	
	(a)	960	(b)	560	(c)	216	(d)	384	
22.	If ${}^{n}P_{7} =$	210 ($^{n}P_{5}$), then : n =	=						
	(a)	21	(b)	20	(c)	10	(d)	None of these	

Learning with the Speed of Mumbai and the Tradition of Kota

23.	If ${}^{2n}P_3 =$	If ${}^{2n}P_3 = 2({}^{n}P_4)$, then : n =								
	(a)	8	(b)	6	(c)	12	(d)	4		
24.	$If {}^{2n}\!P_{n+}$	$_{1}:^{2n-2}P_{n}=56:3, th$	en : n =							
	(a)	4	(b)	67	(c)	10	(d)	3		
25.	If ${}^{10}P_{r} =$	$= {}^{9}P_{5} + 5 ({}^{9}P_{4})$								
	(a)	2	(b)	5	(c)	3	(d)	4		
26.	If ${}^{15}P_r$:	${}^{16}P_r = 3:4$, then : r	=							
	(a)	2	(b)	3	(c)	4	(d)	7		
27.	(n + 1)	. ${}^{n}P_{r} =$								
	(a)	${}^{n}\mathbf{P}_{r+1}$	(b)	$^{n+1}P_{r}$	(c)	$^{n+1}P_{r+1} \\$	(d)	$^{n+1}P_{r\!-\!1}$		
28.	Numbe other is	er of arrangements of	of letters	s of the word STRA	NGE in	which the vowels are	e never	separated from each		
	(a)	1440	(b)	3600	(c)	5040	(d)	None of these		
29.	Numbe	er of distinct (disting	guishable	e) permutations of lett	ters of th	e word MISSISSIPP	[is			
	(a)	$\frac{(11)!}{(4+4+2)!}$	(b)	$\frac{(11)!}{2(4!)^2}$	(c)	(11)!	(d)	None of these		
30.	If $^{n+3}P_6$	$: {}^{n+2}P_4 = 14:1$, then	n : n =							
	(a)	2	(b)	4	(c)	8	(d)	6		

Max Marks: 60

JB 2 MR BATCH PHYSICS : DCT ANSWER KEY

Topic: Work Energy Power

1.	(d)	2.	(c)	3.	(a)	4.	(a)	5.	(d)
6.	(d)	7.	(b)	8.	(b)	9.	(d)	10.	(a)
11.	(a)	12.	(d)	13.	(b)	14.	(d)	15.	(a)

Max Marks: 60

Date: 02.10.2022

Date: 02.10.2022

JB 2 MR BATCH MATHEMATICS : DCT ANSWER KEY Topic: Permutation

16.	(d)	17.	(b)	18.	(b)	19.	(b)	20.	(c)
21.	(c)	22.	(b)	23.	(a)	24.	(a)	25.	(b)
26.	(c)	27.	(c)	28.	(a)	29.	(b)	30.	(b)